| 0 | 0 | 10 |
| 下载次数 | 被引频次 | 阅读次数 |
数字经济与实体经济的深度融合为高技术制造业绿色转型注入了新动能,成为激发绿色创新活力、实现高质量发展的关键路径。基于2013—2022年中国30个省份的面板数据,从研发要素流动视角检验了数字经济对高技术制造业绿色创新效率的影响效应及作用机制。研究发现,数字经济能显著提升高技术制造业绿色创新效率和两阶段效率,且该结论在经过一系列稳健性和内生性检验后依然成立;机制分析表明,数字经济通过加速研发人员和研发资本流动有效提升高技术制造业绿色技术研发效率,而在绿色成果转化阶段,研发人员流动在两者之间发挥正向中介作用,研发资本流动的作用效果反之;异质性检验发现,东部地区数字经济的赋能效果显著强于中西部地区;同时,在知识产权保护程度较高及要素市场发育程度较好的地区,数字经济的促进效果更加明显。基于此,应加强数字基础设施建设、完善知识产权保护体系、注重绿色创新资源禀赋,以提升高技术制造业绿色创新效率和两阶段效率。
Abstract:The deep integration of the digital economy and the real economy is a key driver for industrial transformation and green development.Especially under the guidance of the new development philosophy, this integration has injected new momentum into the green transformation of high-tech manufacturing, becoming a critical pathway to stimulate green innovation vitality and achieve high-quality development.As the main battlefield for scientific and technological innovation, high-tech manufacturing is also the core supporting force for the green transformation of the modern industrial system.Enhancing its green innovation efficiency amid the digital economy wave is an urgent issue that needs to be addressed.This study, based on panel data for 30 provinces in China from 2013 to 2022,examines the impact and mechanisms of the digital economy on the green innovation efficiency of high-tech manufacturing from the perspective of R&D factor mobility.The findings indicate that the digital economy significantly enhances the green innovation efficiency and two-stage efficiency in high-tech manufacturing, and it remains valid after a series of robustness and endogeneity tests.Mechanism analysis indicates that the digital economy enhances the green technology R&D efficiency in high-tech manufacturing by accelerating the flow of R&D personnel and capital.During the green technology commercialization phase, the flow of R&D personnel plays a positive mediating role, while the flow of R&D capital has the opposite effect.Heterogeneity tests reveal that the enabling effects of the digital economy are significantly stronger in eastern regions than in central and western regions.Additionally, in regions with higher levels of intellectual property protection and better-developed factor markets, the promotional effects of the digital economy are more pronounced.On the basis, the following policy recommendations are proposed: First, the government should strengthen digital-infrastructure construction, improve digital application levels, and promote the leading role of the digital industry in the green transformation of high-tech manufacturing.Second, the government should improve the intellectual property protection system, clarify the boundaries of property rights protection, and effectively safeguard the rights and interests of green technology R&D entities.Furthermore, it is necessary to formulate differentiated property rights protection strategies tailored to the characteristics of high-tech sub-industries.Last, attention should be paid to the endowment of green innovation resources.Digital resources should be reasonably allocated to narrow the regional digital-development.And active encouragement should be given to technological exchanges among high-tech enterprises to foster a proactive green R&D environment.
[1] 姚孟超,段进军,张仁杰,等.中国高技术产业绿色创新效率的空间关联结构与影响机制分析[J].长江流域资源与环境,2022,31(11):2345-2356.
[2] 郭爱君,杨春林,张永年,等.数字经济产业发展对城市绿色创新效率的影响——基于两阶段价值链视角的分析[J].城市问题,2023(1):49-59.
[3] 韩先锋,李勃昕,刘娟.中国OFDI逆向绿色创新的异质动态效应研究[J].科研管理,2020,41(12):32-42.
[4] 卢建霖,蒋天颖,傅梦钰.数字金融对绿色创新效率的影响路径[J].经济地理,2023,43(1):141-147.
[5] LV C,SHAO C,LEE C C.Green technology innovation and financial development:do environmental regulation and innovation output matter?[J].Energy economics,2021,98:105237.
[6] ZHANG L,MA X,OCK Y S,et al.Research on regional differences and influencing factors of chinese industrial green technology innovation efficiency based on dagum Gini coefficient decomposition[J].Land,2022,11(1):122.
[7] 韩艳旗,吕惠,史金平.互联网发展、环境规制与高技术产业绿色创新效率——以长江经济带为例[J].长江流域资源与环境,2022,31(11):2382-2392.
[8] 袁朋伟,董晓庆.黄河流域工业绿色技术创新效率的时空差异与成因识别研究[J].济南大学学报(社会科学版),2023,33(5):93-105.
[9] 王韶华,林小莹,张伟,等.绿色信贷对中国工业绿色技术创新效率的影响研究[J].统计与信息论坛,2023,38(4):88-102.
[10] LI Z,CHEN D,WANG S,et al.The inverted U relationship between industrial intelligence and green innovation efficiency:evidence from China[J].Technology analysis & strategic management,2025,37(9):982-1000.
[11] 黄明凤,姚栋梅.研发要素流动、空间溢出效应与区域创新效率——基于省际面板数据的空间杜宾模型分析[J].科研管理,2022,43(4):149-157.
[12] 沈路,钞小静,南士敬.研发要素流动对区域绿色创新效率的影响——以“一带一路”沿线省份为例[J].软科学,2023,37(6):89-96.
[13] 袁徽文,高波.数字经济发展与高技术产业创新效率提升——基于中国省级面板数据的实证检验[J].科技进步与对策,2022,39(10):61-71.
[14] LUO Y,LU Z,WU C.Can internet development accelerate the green innovation efficiency convergence:evidence from China[J].Technological forecasting and social change,2023,189:122352.
[15] 冯迪,马慧子.信息化对绿色工艺创新组织变革影响研究——以高耗能高污染制造业企业为例[J].技术经济与管理研究,2015(9):58-62.
[16] ZHANG W,MENG F.Enterprise digital transformation and regional green innovation efficiency based on the perspective of digital capability:evidence from China[J].Systems,2023,11:526.
[17] 白雪洁,李琳,宋培.数字化改造能否推动中国行业技术升级?[J].上海经济研究,2021(10):62-76.
[18] 成琼文,贺显祥,李宝生.绿色技术创新效率及其影响因素——基于我国35个工业行业的实证研究[J].中南大学学报(社会科学版),2020,26(2):97-107.
[19] 刘畅,潘慧峰,李珮,等.数字化转型对制造业企业绿色创新效率的影响和机制研究[J].中国软科学,2023(4):121-129.
[20] REN X,LI W,LI Y.Climate risk,digital transformation and corporate green innovation efficiency:evidence from China[J].Technological forecasting and social change,2024,209:123777.
[21] 陆岷峰.金融数智化赋能实体经济:个性特征、运行机理与应对策略[J].兰州学刊,2023(12):35-47.
[22] SI H,TIAN Z,GUO C,et al.The driving effect of digital economy on green transformation of manufacturing[J].Energy & environment,2024,35(5):2636-2656.
[23] 邓若冰,吴福象.数字经济抑制研发要素市场扭曲了吗[J].现代经济探讨,2022(11):24-35.
[24] 王丹,惠宁,许潇丹.数字经济驱动中国传统产业创新发展研究[J].统计与信息论坛,2024,39(3):29-39.
[25] 杨武,杨大飞,雷家骕.R&D投入对技术创新绩效的影响研究[J].科学学研究,2019,37(9):1712-1720.
[26] TONE K,TSUTSUI M.Network DEA:a slacks-based measure approach[J].European journal of operational research,2009,197(1):243-252.
[27] 王洪庆,郝雯雯.高新技术产业集聚对我国绿色创新效率的影响研究[J].中国软科学,2022(8):172-183.
[28] 陈永伟,陈志远,阮丹.中国省域数字经济的发展水平与空间收敛性分析[J].统计与信息论坛,2023,38(7):18-31.
[29] 王军,朱杰,罗茜.中国数字经济发展水平及演变测度[J].数量经济技术经济研究,2021,38(7):26-42.
[30] 金灿阳,徐蔼婷,邱可阳.中国省域数字经济发展水平测度及其空间关联研究[J].统计与信息论坛,2022,37(6):11-21.
[31] 李婧,产海兰.空间相关视角下R&D人员流动对区域创新绩效的影响[J].管理学报,2018,15(3):399-409.
[32] 裴育,李秋梓.研发人员和研发资本流动对区域创新绩效的影响机制研究——以长三角为例[J].审计与经济研究,2023,38(2):1-13.
[33] 吴延兵.R&D存量、知识函数与生产效率[J].经济学(季刊),2006(3):1129-1156.
[34] 白俊红,王钺,蒋伏心,等.研发要素流动、空间知识溢出与经济增长[J].经济研究,2017,52(7):109-123.
[35] 李颖,徐小峰,郑越.环境规制强度对中国工业全要素能源效率的影响——基于2003—2016年30省域面板数据的实证研究[J].管理评论,2019,31(12):40-48.
[36] 黄勃,李海彤,刘俊岐,等.数字技术创新与中国企业高质量发展——来自企业数字专利的证据[J].经济研究,2023,58(3):97-115.
[37] 张勋,杨桐,汪晨,等.数字金融发展与居民消费增长:理论与中国实践[J].管理世界,2020,36(11):48-63.
[38] 王小鲁,胡李鹏,樊纲.中国分省份市场化指数报告(2021)[M].北京:社会科学文献出版社,2021:223-224.
基本信息:
DOI:10.20207/j.cnki.1007-3116.2025.0041
中图分类号:F424;F49
引用信息:
[1]程广斌,栗靖茹,吴家庆.数字经济、研发要素流动与高技术制造业绿色创新效率[J].统计与信息论坛,2025,40(10):46-60.DOI:10.20207/j.cnki.1007-3116.2025.0041.
基金信息:
国家社会科学基金重点项目“地方政府多维竞争对绿色全要素生产率的影响研究”(22AJY005)