2025 01 v.40 50-64
全球金融风险溢出对中国系统性金融风险的影响
基金项目(Foundation):
国家社会科学基金一般项目“数字金融项目支持中小民营企业融资生态链研究”(19BJL075)
邮箱(Email):
DOI:
10.20207/j.cnki.1007-3116.2025.0007
中文作者单位:
四川大学经济学院;
摘要(Abstract):
为了研究外部风险输入对中国金融稳定的影响,首先利用全球股票市场的日频交易数据,采用网络关联度模型构建了全球金融风险溢出网络,并基于该网络对中国面临的外部风险输入进行了量化。然后,从传染性的视角出发,从市场、行业和机构的角度测度了中国系统性金融风险,并对外部风险输入和中国系统性金融风险的静态结构和演化动态进行了讨论。最后,采用分位数对分位数方法(Quantile-on-Quantile Approach)进行实证分析,研究了全球金融风险溢出对中国系统性金融风险的影响在两者不同分位点上的差异。研究发现,在极端分位点上,内外风险的共振较为剧烈,而在较为温和的分位点上,这种共振的强度较弱。基于研究结果,监管部门可提高系统性金融风险监测的实时性与有效性,以防范外部风险输入引发的国内风险的共振。
关键词(KeyWords):
全球金融风险溢出;系统性金融风险;金融风险共振;网络关联度模型;分位数对分位数方法
367 | 0 | 68 |
下载次数 | 被引频次 | 阅读次数 |
参考文献
[1] 乔小勇,郑闽荟,张瀚元.贸易政策不确定性与全球生产网络——基于内外资企业异质性视角[J].商业研究,2024(2):55-64.
[2] 殷文贵.共建“一带一路”高质量发展的经验启示与未来展望[J].西安财经大学学报,2023,36(3):87-97.
[3] FARKHONDEH R O,VAFA H S,KHOOJINE A S,et al.Interconnectedness of systemic risk in the Chinese economy:the Granger causality and CISS indicator approach[J].Risk management,2024,26(2):9.
[4] ABUZAYED B,BOURI E,AL-FAYOUMI N,et al.Systemic risk spillover across global and country stock markets during the COVID-19 pandemic[J].Economic analysis and policy,2021,71:180-197.
[5] SO M K P,CHU A M Y,CHAN T W C.Impacts of the COVID-19 pandemic on financial market connectedness[J].Finance research letters,2021,38:101864.
[6] 郭娜,陈东晖,刘彦迪,等.尾部溢出视角下国际油价对中国新能源股价的影响研究[J].统计与信息论坛,2023,38(8):89-100.
[7] CEVIK E I,CALISKAN T H,KILIC Y,et al.Interconnectedness and systemic risk:evidence from global stock markets[J].Research in international business and finance,2024,69:102282.
[8] WANG G J,CHEN Y Y,SI H B,et al.Multilayer information spillover networks analysis of China’s financial institutions based on variance decompositions[J].International review of economics & finance,2021,73:325-347.
[9] CAO J,WEN F,STANLEY H E,et al.Multilayer financial networks and systemic importance:evidence from China[J].International review of financial analysis,2021,78:101882.
[10] XU Q,YAN H,ZHAO T.Contagion effect of systemic risk among industry sectors in China’s stock market[J].The North American journal of economics and finance,2022,59:101576.
[11] 欧阳资生,路敏,周学伟.基于TVP-VAR-LSTM模型的中国金融业风险溢出与预警研究[J].统计与信息论坛,2022,37(10):53-64.
[12] ZHANG X,WEI C,LEE C C,et al.Systemic risk of Chinese financial institutions and asset price bubbles[J].The North American journal of economics and finance,2023,64:101880.
[13] 刘金全,申瑛琦,张龙.美联储政策不确定性、中国政策差异化反应与宏观经济波动[J].统计与信息论坛,2023,38(8):78-88.
[14] 欧阳资生,柯玉茹,王连军.重大突发公共事件对系统性金融风险的影响研究[J].统计与信息论坛,2024,39(3):53-65.
[15] 杨楠,方茜.基于黄金平价的ARMAX-GARCHX汇率模型研究[J].济南大学学报(社会科学版),2023,33(3):76-87.
[16] 刘晓星,汤淳,张颖.资本异常流动、风险传染网络与金融系统稳定[J].经济研究,2024,59(3):93-111.
[17] 杨子晖,陈雨恬,黄卓.国际冲击下系统性风险的影响因素与传染渠道研究[J].经济研究,2023,58(1):90-106.
[18] DIEBOLD F X,YILMAZ K.Better to give than to receive:predictive directional measurement of volatility spillovers[J].International journal of forecasting,2012,28(1):57-66.
[19] GABAUER D,CHATZIANTONIOU I,STENFORS A.Model-free connectedness measures[J].Finance research letters,2023,54:103804.
[20]BARUNíKJ,KREHLíKT.Measuring the frequency dynamics of financial connectedness and systemic risk[J].Journal of financial econometrics,2018,16(2):271-296.
[21] CHATZIANTONIOU I,GABAUER D,GUPTA R.Integration and risk transmission in the market for crude oil:new evidence from a time-varying parameter frequency connectedness approach[J].Resources policy,2023,84:103729.
[22] SIM N,ZHOU H.Oil prices,US stock return,and the dependence between their quantiles[J].Journal of banking & finance,2015,55:1-8.
[23] 李政,方梦洁,张梦.中国金融压力跨市场溢出效应研究——基于系统性风险管理的视角[J].金融论坛,2022,27(8):7-18.
[24] 郭豫媚,戴赜,彭俞超.中国货币政策利率传导效率研究:2008—2017[J].金融研究,2018(12):37-54.
[25] 王金明,肖苏艺.外汇市场波动的溢出效应与影响因素研究[J].暨南学报(哲学社会科学版),2023,45(6):94-107.
[26] 姚登宝,施腾,刘治戎.金融周期视角下中国系统性金融风险的状态转换效应研究[J].金融经济学研究,2021,36(2):3-17.
[27] 欧阳资生,周学伟.系统性金融风险对宏观经济的溢出效应研究——基于分位数对分位数方法[J].统计研究,2022,39(10):68-83.
(1)作者认为风险的传染是风险的有向溢出过程或结果,因此本文在表达上并未严格区分“风险溢出”和“风险传染”。
(2)16个G20国家包括中国、加拿大、美国、英国、法国、德国、日本、巴西、俄罗斯、印度、墨西哥、阿根廷、土耳其、韩国、印度尼西亚和澳大利亚。其股票市场指数分别对应上证指数、加拿大S&PTSX综合、标普500、英国富时100、法国CAC40、德国DAX、日经225、巴西IBOVESPA指数、RTS指数、印度SENSEX30、墨西哥MXX、阿根廷MERV、伊斯坦堡ISE100、韩国综合指数、印尼综指和澳大利亚普通股指数。以上数据均来源于Wind数据库。
(3)数据来源:世界银行。
(4)市场i对市场j的净溢出等于市场i对市场j的溢出减去市场j对市场i的溢出。
(5)分别计算每一市场对所有其余市场风险净溢出的总和,用以表示该市场风险净溢出水平。
(6)风险净溢出水平排名前4的市场(共16个市场),被认为是风险净溢出水平较高的市场。
(7)本文所有纳入时域的风险溢出动态测度均采用时变参数频域关联度模型(TVP frequency connectedness approach),滚动窗口设置为250天得到,后续将不再赘述。
(8)其中,银行业金融机构共16家,包括工商银行、农业银行、中国银行、建设银行、交通银行、招商银行、兴业银行、浦发银行、中信银行、平安银行、民生银行、光大银行、北京银行、华夏银行、宁波银行和南京银行。证券业金融机构共12家,包括中信证券、海通证券、中油资本、广发证券、华泰证券、招商证券、光大证券、国投资本、兴业证券、长江证券、国元证券和越秀资本。保险业金融机构共4家,包括中国太保、中国人寿、中国平安和天茂集团。
(9)将解释变量滞后一期处理,以解决变量同期性带来的潜在内生性问题。
(10)左侧坐标系是3D视角下的QQA系数矩阵,右侧坐标系是左侧图像在xy平面上的投影。其中x轴(横轴)表示全球金融风险对中国溢出指标的各分位点,y轴(纵轴)表示不同视角下中国的系统性金融风险状况的各分位点,z轴表示系数β1(θ,τ)的估计结果,下同。
[2] 殷文贵.共建“一带一路”高质量发展的经验启示与未来展望[J].西安财经大学学报,2023,36(3):87-97.
[3] FARKHONDEH R O,VAFA H S,KHOOJINE A S,et al.Interconnectedness of systemic risk in the Chinese economy:the Granger causality and CISS indicator approach[J].Risk management,2024,26(2):9.
[4] ABUZAYED B,BOURI E,AL-FAYOUMI N,et al.Systemic risk spillover across global and country stock markets during the COVID-19 pandemic[J].Economic analysis and policy,2021,71:180-197.
[5] SO M K P,CHU A M Y,CHAN T W C.Impacts of the COVID-19 pandemic on financial market connectedness[J].Finance research letters,2021,38:101864.
[6] 郭娜,陈东晖,刘彦迪,等.尾部溢出视角下国际油价对中国新能源股价的影响研究[J].统计与信息论坛,2023,38(8):89-100.
[7] CEVIK E I,CALISKAN T H,KILIC Y,et al.Interconnectedness and systemic risk:evidence from global stock markets[J].Research in international business and finance,2024,69:102282.
[8] WANG G J,CHEN Y Y,SI H B,et al.Multilayer information spillover networks analysis of China’s financial institutions based on variance decompositions[J].International review of economics & finance,2021,73:325-347.
[9] CAO J,WEN F,STANLEY H E,et al.Multilayer financial networks and systemic importance:evidence from China[J].International review of financial analysis,2021,78:101882.
[10] XU Q,YAN H,ZHAO T.Contagion effect of systemic risk among industry sectors in China’s stock market[J].The North American journal of economics and finance,2022,59:101576.
[11] 欧阳资生,路敏,周学伟.基于TVP-VAR-LSTM模型的中国金融业风险溢出与预警研究[J].统计与信息论坛,2022,37(10):53-64.
[12] ZHANG X,WEI C,LEE C C,et al.Systemic risk of Chinese financial institutions and asset price bubbles[J].The North American journal of economics and finance,2023,64:101880.
[13] 刘金全,申瑛琦,张龙.美联储政策不确定性、中国政策差异化反应与宏观经济波动[J].统计与信息论坛,2023,38(8):78-88.
[14] 欧阳资生,柯玉茹,王连军.重大突发公共事件对系统性金融风险的影响研究[J].统计与信息论坛,2024,39(3):53-65.
[15] 杨楠,方茜.基于黄金平价的ARMAX-GARCHX汇率模型研究[J].济南大学学报(社会科学版),2023,33(3):76-87.
[16] 刘晓星,汤淳,张颖.资本异常流动、风险传染网络与金融系统稳定[J].经济研究,2024,59(3):93-111.
[17] 杨子晖,陈雨恬,黄卓.国际冲击下系统性风险的影响因素与传染渠道研究[J].经济研究,2023,58(1):90-106.
[18] DIEBOLD F X,YILMAZ K.Better to give than to receive:predictive directional measurement of volatility spillovers[J].International journal of forecasting,2012,28(1):57-66.
[19] GABAUER D,CHATZIANTONIOU I,STENFORS A.Model-free connectedness measures[J].Finance research letters,2023,54:103804.
[20]BARUNíKJ,KREHLíKT.Measuring the frequency dynamics of financial connectedness and systemic risk[J].Journal of financial econometrics,2018,16(2):271-296.
[21] CHATZIANTONIOU I,GABAUER D,GUPTA R.Integration and risk transmission in the market for crude oil:new evidence from a time-varying parameter frequency connectedness approach[J].Resources policy,2023,84:103729.
[22] SIM N,ZHOU H.Oil prices,US stock return,and the dependence between their quantiles[J].Journal of banking & finance,2015,55:1-8.
[23] 李政,方梦洁,张梦.中国金融压力跨市场溢出效应研究——基于系统性风险管理的视角[J].金融论坛,2022,27(8):7-18.
[24] 郭豫媚,戴赜,彭俞超.中国货币政策利率传导效率研究:2008—2017[J].金融研究,2018(12):37-54.
[25] 王金明,肖苏艺.外汇市场波动的溢出效应与影响因素研究[J].暨南学报(哲学社会科学版),2023,45(6):94-107.
[26] 姚登宝,施腾,刘治戎.金融周期视角下中国系统性金融风险的状态转换效应研究[J].金融经济学研究,2021,36(2):3-17.
[27] 欧阳资生,周学伟.系统性金融风险对宏观经济的溢出效应研究——基于分位数对分位数方法[J].统计研究,2022,39(10):68-83.
(1)作者认为风险的传染是风险的有向溢出过程或结果,因此本文在表达上并未严格区分“风险溢出”和“风险传染”。
(2)16个G20国家包括中国、加拿大、美国、英国、法国、德国、日本、巴西、俄罗斯、印度、墨西哥、阿根廷、土耳其、韩国、印度尼西亚和澳大利亚。其股票市场指数分别对应上证指数、加拿大S&PTSX综合、标普500、英国富时100、法国CAC40、德国DAX、日经225、巴西IBOVESPA指数、RTS指数、印度SENSEX30、墨西哥MXX、阿根廷MERV、伊斯坦堡ISE100、韩国综合指数、印尼综指和澳大利亚普通股指数。以上数据均来源于Wind数据库。
(3)数据来源:世界银行。
(4)市场i对市场j的净溢出等于市场i对市场j的溢出减去市场j对市场i的溢出。
(5)分别计算每一市场对所有其余市场风险净溢出的总和,用以表示该市场风险净溢出水平。
(6)风险净溢出水平排名前4的市场(共16个市场),被认为是风险净溢出水平较高的市场。
(7)本文所有纳入时域的风险溢出动态测度均采用时变参数频域关联度模型(TVP frequency connectedness approach),滚动窗口设置为250天得到,后续将不再赘述。
(8)其中,银行业金融机构共16家,包括工商银行、农业银行、中国银行、建设银行、交通银行、招商银行、兴业银行、浦发银行、中信银行、平安银行、民生银行、光大银行、北京银行、华夏银行、宁波银行和南京银行。证券业金融机构共12家,包括中信证券、海通证券、中油资本、广发证券、华泰证券、招商证券、光大证券、国投资本、兴业证券、长江证券、国元证券和越秀资本。保险业金融机构共4家,包括中国太保、中国人寿、中国平安和天茂集团。
(9)将解释变量滞后一期处理,以解决变量同期性带来的潜在内生性问题。
(10)左侧坐标系是3D视角下的QQA系数矩阵,右侧坐标系是左侧图像在xy平面上的投影。其中x轴(横轴)表示全球金融风险对中国溢出指标的各分位点,y轴(纵轴)表示不同视角下中国的系统性金融风险状况的各分位点,z轴表示系数β1(θ,τ)的估计结果,下同。
基本信息:
DOI:10.20207/j.cnki.1007-3116.2025.0007
中图分类号:F832.6
引用信息:
[1]马德功,周进为.全球金融风险溢出对中国系统性金融风险的影响[J].统计与信息论坛,2025,40(01):50-64.DOI:10.20207/j.cnki.1007-3116.2025.0007.
基金信息:
国家社会科学基金一般项目“数字金融项目支持中小民营企业融资生态链研究”(19BJL075)