| 438 | 0 | 49 |
| 下载次数 | 被引频次 | 阅读次数 |
随着数字经济发展,数据资产愈加受到国家和企业的重视,科学地呈现数据资产在国民经济中的重要作用是数据资产核算亟须突破的难题。通过构建数据资产卫星账户,可实现对数据经济活动情况的量化呈现以及对数据资产价值的动态把握。基于数据资产在经济运行中的规律,设置了全方位、有层次的账户体系。从数据资产的生产和使用角度划分数据资产卫星账户的核算主体,分别对应产业部门和机构部门。核算客体为数据产品和数据资产,根据数据产品供给和使用的不同,将数据产品划分为8种类型,进而探讨不同类型数据产品的估价方法。对数据资产的全面核算应包含数据资产自身的形成过程和数据资产对其他经济指标的外部效应两个方面,分别设置数据资产内生账户和外生账户。内生账户遵循复式记账和国民经济平衡原则,依据国民经济基本账户序列来设置核算账户,以生产核算为起点,经过收入分配、资本形成等流量核算,最后归结于数据资产存量核算,从而编制产品账户、生产账户、收入使用账户、资本账户等流量账户以及数据资产存量账户。数据资产外生账户以GDP指标为例,依据不同的GDP核算方法设置GDP影响账户,展示数据资本化对GDP核算的影响。从投入产出表中选取相关数据进行账户的案例编制,验证了数据资产卫星账户设置的合理性。
Abstract:With the development of the digital economy, data assets have garnered increasing attention from both national governments and enterprises.A critical challenge in data asset accounting lies in rigorously and systematically quantifying the pivotal role that data assets play in driving the national economy.By constructing satellite account for data assets, it becomes possible to systematically quantify data-driven economic activities and dynamically assess the value of data assets.Grounded in the interconnected structure of data assets within economic operations, this framework adpts a multi-dimensional, hierarchical account system that comprehensively maps the lifecycle and economic contributions of data assets.The accounting entities in the data asset satellite accounts are classified into two dimensions based on the production and utilization of data assets, corresponding to industrial sectors and institutional sectors, respectively.The accounting objects include data products and data assets.Data products are further categorized into eight distinct types based on variations in their supply mechanisms and usage patterns, thereby facilitating the exploration of tailored valuation methodologies for different types of data products.A holistic accounting framework for data assets must systematically address two interconnected dimensions: the endogenous processes governing the creation and accumulation of data assets themselves, and the exogenous spillover effects through which these assets influence broader economic indicators.To operationalize this dual perspective, dedicated endogenous accounts and exogenous accounts and are established as complementary components of the accounting system.The endogenous accounts adhere to the principles of double-entry bookkeeping and national economic equilibrium(where total output, total income, and total expenditure are equal),and are structured in alignment with the core sequence of national economic accounts.Starting with the production account, the framework progresses through flow-based accounts such as income distribution and capital formation.These sequential analyses culminate in stock accounting to evaluate the accumulated value of data assets.This systematic approach enables the compilation of flow accounts(including the goods and services account, production account, distribution of income account, and capital account) alongside dedicated the data asset stock accounts, thereby capturing both transactional dynamics and cumulative asset valuation within a unified system.The exogenous accounts for data assets take Gross Domestic Product(GDP) as an example, GDP impact accounts are established under distinct GDP accounting methodologies(production, income, and expenditure approaches) to systematically quantify how data capitalization redefines GDP measurement.By extracting and applying relevant data from input-output tables to conduct an empirical case implementation of the accounts, this research validates the operational feasibility and structural coherence of the Data Asset Satellite Account framework, demonstrating its alignment with established economic measurement standards.
[1] 许宪春,张钟文,胡亚茹.数据资产统计与核算问题研究[J].管理世界,2022,38(2):16-30.
[2] 叶雅珍,刘国华,朱扬勇.数据资产相关概念综述[J].计算机科学,2019,46(11):20-24.
[3] 中国信息通信研究院云计算与大数据研究所.数据资产管理实践白皮书(3.0)[R].北京:中国信息通信研究院,2018.
[4] AHMAD N,VAB DE VEB P.Recording and measuring data in the System of National Accounts[R].Meeting of the informal advisory group on measuring GDP in a digitalised economy,2018.
[5] 李静萍.数据资产核算研究[J].统计研究,2020,37(11):3-14.
[6] 彭刚,李杰,朱莉.SNA视角下数据资产及其核算问题研究[J].财贸经济,2022,43(5):145-160.
[7] 韩秀兰,王思贤.数据资产的属性、识别和估价方法[J].统计与信息论坛,2023,38(8):3-13.
[8] 吕伊姝,王孝松.数据产权与数据价值市场化配置研究[J].经济学家,2024(6):76-85.
[9] 杜振华,茶洪旺.数据产权制度的现实考量[J].重庆社会科学,2016(8):19-25.
[10] 彭刚,李杰,朱莉.SNA纳入数据核算的潜在影响与难点解析[J].统计研究,2024,41(10):17-31.
[11] 许宪春.数字经济发展给政府统计带来的挑战[J].统计与信息论坛,2023,38(10):3-8.
[12] 王艳,杨达.中国式管理会计体系变革:从数据要素到数据资产[J].管理世界,2024,40(10):171-189.
[13] 王勇,陈鹤丽,孙维鑫.数据资产赋能统计现代化研究[J].统计与信息论坛,2023,38(6):3-18.
[14] 陈梦根,赵怡然,刘毓珊.基于多期超额收益法的数据资产价值评估[J].统计与信息论坛,2025,40(2):3-18.
[15] 李宝瑜,王硕.国家数据资产价值核算研究[J].统计与信息论坛,2025(4):3-15.
[16] 雷小乔,张芳.基于收益现值法的数据资产估价问题研究[J].统计与信息论坛,2023,38(5):3-13.
[17] 雷小乔.互联网平台用户数据资产收益估算方法研究[J].统计研究,2024,41(8):15-28.
[18] Canada Statistics.The value of data in Canada:experimental estimate[EB/OL].(2019-07-10).https://www150.statcan.gc.ca/n1/pub/13-605-x/2019001/article/00009-eng.htm.
[19] 胡亚茹,许宪春.企业数据资产价值的统计测度问题研究[J].统计研究,2022,39(9):3-18.
[20] 王娟娟,金小雪.互联网信息服务平台数据资产评估方法——基于盈利模式差异的视角[J].科技管理研究,2023,43(22):83-94.
[21] 李秉祥,李真,茹雨青.数字经济背景下物流企业大数据资产的估值研究——以圆通速递为例[J].财会通讯,2024(2):84-89.
[22] 蒋萍,艾伟强,王勇.派生产业核算的理论机理与方法逻辑[J].统计研究,2021,38(11):24-34.
[23] FABG B,HAB X.Transportation satellite accounts:a new way of measuring transportation services in America[R].Bureau of Transportation Statistics,1999.
[24] OKUBO S.Framework for an industry-based R&D satellite account[R].BEA Papers,2007.
[25] PHAM T D,DWYER L,SPURR R.Constructing a regional tourism satellite account:the case of Queensland[J].Tourism analysis,2008,13(5/6):445-460.
[26] 杨仲山,张美慧.数字经济卫星账户:国际经验及中国编制方案的设计[J].统计研究,2019,36(5):16-30.
[27] 向书坚,吴文君.中国数字经济卫星账户框架设计研究[J].统计研究,2019,36(10):3-16.
[28] 罗良清,平卫英,张雨露.基于融合视角的中国数字经济卫星账户编制研究[J].统计研究,2021,38(1):27-37.
[29] 李原,刘洋,李宝瑜.数据资产核算若干理论问题辨析[J].统计研究,2022,39(9):19-28.
[30] AKOFF R L.From data to wisdom:presidential address to ISGSR[J].Journal of applied system analysis,1989(6):3-9.
[31] 李金昌.关于统计数据的几点认识[J].统计研究,2017,34(11):3-14.
[32] ISWGNA.Task team on digitalization,recording and valuation of data in national accounts [EB/OL].(2020-10-09).https://unstats.un.org/unsd/nationalaccount/aeg/2020/M14_5_3_1_Recording_of_Data_in_SNA.pdf.
[33] 李晓珊.数据产品的界定和法律保护[J].法学论坛,2022,37(3):122-131.
[34] 朱永敏,张诚.数据产品开发与流通[J].大数据,2023,9(2):46-55.
[35] 蒋萍,刘丹丹,王勇.SNA研究的最新进展:中心框架、卫星账户和扩展研究[J].统计研究,2013,30(3):3-9.
[36] 高敏雪.研发资本化与GDP核算调整的整体认识与建议[J].统计研究,2017,34(4):3-14.
(1)若投入的是数据资产,则以资本服务的方式计为中间消耗。
基本信息:
DOI:10.20207/j.cnki.1007-3116.20250730.001
中图分类号:F49
引用信息:
[1]王盼盼,贾小爱.数据资产卫星账户的框架设计与编制研究[J].统计与信息论坛,2025,40(12):3-17.DOI:10.20207/j.cnki.1007-3116.20250730.001.
基金信息:
国家社会科学基金重大项目“国家数据资产核算研究”(20&ZD135); 泰山学者工程专项经费资助项目“中国国民经济核算分类体系改革与创新研究”(tsqn 202408265)