nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo searchdiv qikanlogo popupnotification paper paperNew
2025, 07, v.40 17-28
中国企业技术创新影响因素研究
基金项目(Foundation): 国家社会科学基金重大项目“大数据背景下我国新经济新动能统计监测与评价研究”(18ZDA124)
邮箱(Email):
DOI: 10.20207/j.cnki.1007-3116.2025.0023
摘要:

促进企业技术创新,加速新质生产力发展已成为新时期中国经济社会发展的关键所在。诸多研究从不同视角对中国企业技术创新影响因素进行了分析,但对众多影响因素的相对重要性尚无系统论述。通过系统文献梳理提炼出24个影响因素,利用机器学习方法,结合A股上市公司数据,重新考察了各个影响因素的相对重要性。结果显示,市场竞争、产业结构、企业价值分别是行业层面、地区层面、企业层面影响技术创新的重要因素;相比于大型企业和国有企业,中小型企业和民营企业受税负、资产收益率、利润率等企业经营状况类因素的影响更大;高技术产业企业则受产业结构和金融发展影响更大。为进一步促进企业创新、培育壮大新质生产力,建议从建立更为公平的市场竞争环境、因地制宜发展特色产业、制定差异化政策等角度入手,消除不正当竞争行为,加速推动产业转型升级,激发不同类型企业的创新积极性。

Abstract:

In the new era, promoting corporate technological innovation and accelerating the development of new quality productive forces have become crucial for China's economic and social progress.Although there have been extensive researches on the factors influencing corporate technological innovation, a systematic evaluation of the relative importance of these factors is still lacking.Aim to fill the gap of identifying the key determinants of corporate technological innovation, which is essential for formulating effective policies to enhance innovation capabilities and drive high-quality economic development.Machine learning methods are applied to analyze the relative importance of 24 factors influencing corporate technological innovation, using data from A-share listed companies in China.The results indicate that, market competition, industrial structure, and firm value are the most significant factors at the industry, regional, and firm levels, respectively.Notably, small and medium-sized enterprises(SMEs) and private firms are more sensitive to factors such as tax burden, return on assets, and profit margin, while high-tech firms are more influenced by industrial structure and financial development.These findings highlight the need for tailored policies to address the diverse needs of different types of firms.This study presents innovates in several ways.First, it uses machine learning methods to construct an indicator for evaluating the relative importance of variables, breaking through the limitations of traditional statistical and econometric methods.Second, it integrates multiple factors influencing corporate technological innovation into a unified analytical framework, providing a comprehensive assessment of their relative importance.Third, it reveals the key factors affecting corporate technological innovation and their heterogeneous impacts on different types of firms, offering valuable insights for policy-making and expanding the existing research on corporate innovation.The findings suggest several policy implications.First, creating a fair market competition environment and eliminating unfair competition practices are essential to promote corporate innovation.Second, local governments should develop characteristic industries based on regional conditions and accelerate industrial upgrading.Third, differentiated policies should be formulated to stimulate the innovation enthusiasm of firms from different sizes, ownership types, and industries.These measures can help enhance corporate innovation capabilities and drive the development of new quality productive forces.

参考文献

[1] 冯根福,郑明波,温军,等.究竟哪些因素决定了中国企业的技术创新——基于九大中文经济学权威期刊和A股上市公司数据的再实证[J].中国工业经济,2021(1):17-35.

[2] STERCK O.On the economic importance of the determinants of long-term growth[R].Oxford:CSAE Working Paper Series,2018.

[3] 王芳,王宣艺,陈硕.经济学研究中的机器学习:回顾与展望[J].数量经济技术经济研究,2020,37(4):146-164.

[4] 冯根福,温军.中国上市公司治理与企业技术创新关系的实证分析[J].中国工业经济,2008(7):91-101.

[5] 李春涛,宋敏.中国制造业企业的创新活动:所有制和CEO激励的作用[J].经济研究,2010,45(5):55-67.

[6] 鞠晓生,卢荻,虞义华.融资约束、营运资本管理与企业创新可持续性[J].经济研究,2013,48(1):4-16.

[7] 胡海峰,赵加良.股权再融资能促进“专精特新”企业发展吗?[J].统计与信息论坛,2024,39(8):43-58.

[8] 邓力平,何巧,王智烜.减税降费背景下企业税负对创新的影响研究[J].经济与管理评论,2020,36(6):101-111.

[9] 吕桁宇,马春爱,汤桐,等.财税激励政策、绿色技术创新与工业企业碳强度[J].统计与信息论坛,2024,39(5):59-72.

[10] 聂辉华,谭松涛,王宇锋.创新、企业规模和市场竞争:基于中国企业层面的面板数据分析[J].世界经济,2008(7):57-66.

[11] 沈坤荣,孙文杰.市场竞争、技术溢出与内资企业R&D效率——基于行业层面的实证研究[J].管理世界,2009(1):38-48.

[12] 杨丹,曾萤,刘自敏.农产品加工企业市场势力与技术创新[J].统计与信息论坛,2024,39(1):87-102.

[13] 黎文靖,郑曼妮.实质性创新还是策略性创新?——宏观产业政策对微观企业创新的影响[J].经济研究,2016,51(4):60-73.

[14] 余明桂,范蕊,钟慧洁.中国产业政策与企业技术创新[J].中国工业经济,2016(12):5-22.

[15] 史宇鹏,顾全林.知识产权保护、异质性企业与创新:来自中国制造业的证据[J].金融研究,2013(8):136-149.

[16] 郑丽琳,刘东升.数字经济、知识溢出与企业创新[J].统计与信息论坛,2024,39(10):42-55.

[17] 谢楠,段子聪,王文玉.地方政府监管下企业绿色技术创新的金融决策分析[J].西安财经大学学报,2024,37(4):45-58.

[18] 刘岩,谢天.跨国增长实证研究的模型不确定性问题:机器学习的视角[J].中国工业经济,2019(12):5-22.

[19] GILCHRIST D S,SANDS E G.Something to talk about:social spillovers in movie consumption[J].Journal of political economy,2016,124(5):339-1382.

[20] DUBE A,JACOBS J,NAIDU S,et al.Monopsony in online labor markets[J].American economic review:insights,2020,2(1):33-46.

[21] WAGER S,ATHEY S.Estimation and inference of heterogeneous treatment effects using random forests[J].Journal of the American Statistical Association,2018,113(523),1228-1242.

[22] FRIEDMAN J H.Greedy function approximation:a gradient boosting machine[J].Annals of statistics,2001,29(5):1189-1232.

[23] 陈劲,陈钰芬.企业技术创新绩效评价指标体系研究[J].科学学与科学技术管理,2006(3):86-91.

[24] 马连福,王丽丽,张琦.混合所有制的优序选择:市场的逻辑[J].中国工业经济,2015(7):7-22.

[25] 吴丰华,刘瑞明.产业升级与自主创新能力构建——基于中国省际面板数据的实证研究[J].中国工业经济,2013(5):57-69.

[26] 唐松,伍旭川,祝佳.数字金融与企业技术创新——结构特征、机制识别与金融监管下的效应差异[J].管理世界,2020,36(5):52-66.

[27] 吴超鹏,唐菂.知识产权保护执法力度、技术创新与企业绩效——来自中国上市公司的证据[J].经济研究,2016,51(11):125-139.

[28] 宋敏.数字经济、知识流动与企业创新绩效[J].技术经济与管理研究,2023(8):39-44.

[29] 刘华,王姣,陈力朋.财政透明、融资约束与企业创新投入[J].中南财经政法大学学报,2023(4):70-80.

[30] 李林木,汪冲.税费负担、创新能力与企业升级——来自“新三板”挂牌公司的经验证据[J].经济研究,2017,52(11):119-134.

[31] 吴辉航,刘小兵,季永宝.减税能否提高企业生产效率?——基于西部大开发准自然实验的研究[J].财经研究,2017,43(4):55-67.

[32] 景明禹,刘璐,王鲁宁.税收负担不确定性、政府补助与企业创新[J].财经科学,2022(9):138-148.

[33] 李兵,岳云嵩,陈婷.出口与企业自主技术创新:来自企业专利数据的经验研究[J].世界经济,2016,39(12):72-94.

[34] 安同良,施浩,ALCORTA L.中国制造业企业R&D行为模式的观测与实证——基于江苏省制造业企业问卷调查的实证分析[J].经济研究,2006(2):21-30.

[35] 顾夏铭,陈勇民,潘士远.经济政策不确定性与创新——基于我国上市公司的实证分析[J].经济研究,2018,53(2):109-123.

(1)American Economic Review、Econometrica、Journal of Political Economy、Quarterly Journal of Economics、Review of Economic Studies。

(2)本文具体重复的次数为10次,在重复过程中每次结果均未出现大幅度波动。

(3)除特别说明外,本文中拟合优度指的是测试集的拟合优度。

(4)之所以选择30亿元为界,主要是考虑到分组后企业数量的相对均衡,避免因为样本量差异而产生偏差。

(5)由于外资企业样本量太少,未单独分组检验;对于混合所有制企业,选取控股比例第一排位的企业类型。

基本信息:

DOI:10.20207/j.cnki.1007-3116.2025.0023

中图分类号:F273.1

引用信息:

[1]许英杰,许宪春,田芳菲.中国企业技术创新影响因素研究[J].统计与信息论坛,2025,40(07):17-28.DOI:10.20207/j.cnki.1007-3116.2025.0023.

基金信息:

国家社会科学基金重大项目“大数据背景下我国新经济新动能统计监测与评价研究”(18ZDA124)

检 索 高级检索

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文